1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
| x = torch.arange(12) #tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
x = torch.zeros((2,3,4)) #tensor([[[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]],
[[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]]]) x = torch.ones((2,3,4)) #tensor([[[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]],
[[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]]) #随机填充 c = torch.randint(low=0,high=10,size=(3,4)) #每个元素为0到10之间的随机整数值 #tensor([[4, 5, 5, 4], [1, 5, 3, 2], [3, 5, 7, 6]])
d = torch.rand(3,4) #每个元素为0到1之间的随机浮点值 #tensor([[0.0413, 0.9341, 0.4687, 0.3344], [0.1153, 0.6723, 0.3727, 0.3245], [0.6182, 0.1326, 0.9461, 0.5833]])
e = torch.randn((3,4)) # 每个元素服从正态分布 #tensor([[ 0.1260, 1.5217, -0.0127, 2.3229], [ 0.5907, 0.1080, -0.5392, 0.9487], [ 1.0874, -0.0342, 0.9897, -1.0400]])
|